skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zavalij, Peter_Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report the synthesis and characterization of sulfated pillar[5]arene hosts (P5S2‐P5S10) that differ in the number of sulfate substituents. All fiveP5Snhosts display high solubility in water (73–131 mM) and do not undergo significant self‐association according to1H NMR dilution experiments. The x‐ray crystal structures ofP5S6,P5S6 ⋅ Me6HDA,P5S8 ⋅ Me6HDA, andP5S10 ⋅ Me6HDAreveal one intracavity molecule ofMe6HDAand several external molecules ofMe6HDAwhich form a network of close methonium ⋅ ⋅ ⋅ sulfate interactions. The thermodynamic parameters of complexation betweenP5Snand the panel of guests was measured by direct or competitive isothermal titration calorimetry. We find that the binding free energy toward a guest becomes more negative as the number of sulfate substituents increase. Conversely, the binding free energy of a specific sulfated pillar[5]arene toward a homologous series of guests becomes more negative as the number of NMe groups increases. The ability to tune the host ⋅ guest affinity by changing the number of sulfate substituents will be valuable in supramolecular polymers, separation materials, and latching applications. 
    more » « less